Direct Torque Controlled Drive Train for Electric Vehicle
نویسندگان
چکیده
Electric vehicle (EV) due to its running zero emission, sustainability and efficiency is of interest for future transportation. In-wheel technology has been one of the main research concentration points in last decade. BLDC motor is on demand for in-wheel application because of its high efficiency, torque/speed characteristics, high power to size ratio, high operating life and noiseless operation. In this paper direct torque control (DTC) switching technique of BLDC motor for EV propulsion system is proposed and simulated in MATLAB/ SIMULINK. The Simulation results show effective control of torque and remarkable reduction of torque ripple amplitude as compared to conventional reported switching techniques. Improvements of in-wheel motor’s torque controllability result to have more efficient and safer electric vehicle. The simulation results of proposed switching system are satisfactory and show correct performance of system. Index terms — BLDC motor; In-wheel motors; Direct torque control (DTC); Electric vehicle.
منابع مشابه
Type-2 Fuzzy Braking-Torque Electronic Stability Control for Four-Wheel Independent Drive Electric Vehicles
The electronic stability control (ESC) system is one of the most important active safety systems in vehicles. Here, we intend to improve the Electronic stability of four in-wheel motor drive electric vehicles. We will design an electronic stability control system based on Type-2 fuzzy logic controller. Since, Type-2 fuzzy controller has uncertainty in input interval furthermore of output fuzzin...
متن کاملYaw Rate Control and Actuator Fault Detection and Isolation for a Four Wheel Independent Drive Electric Vehicle
In this paper, a new actuator fault detection and isolation method for a four wheel independent drive electric vehicle is proposed. Also, a controller based on sliding mode control method is proposed for lateral stability of the vehicle. The proposed control method is designed in three high, medium and low levels. At the high-level, the vehicle desired dynamics such as longitudinal speed refere...
متن کاملOptimal Design of Axial Flux Permanent Magnet Synchronous Motor for Electric Vehicle Applications Using GAand FEM
Axial Flux Permanent Magnet (AFPM) machines are attractive candidates for Electric Vehicles (EVs) applications due to their axial compact structure, high efficiency, high power and torque density. This paper presents general design characteristics of AFPM machines. Moreover, torque density of the machine which is selected as main objective function, is enhanced by using Genetic Algorithm (GA) a...
متن کاملField Oriented Control of Dual Mechanical Port Machine for Hybrid Electric Vehicle
A dual mechanical port machine (DMPM) is used as an electrically variable transmission (EVT) in hybrid electric vehicle (HEV). In the conventional HEV, this machine is replaced by a planetary gearbox and two electric machines and makes this structure simpler. This paper presents field oriented control (FOC) for DMPM. For HEV application, drive efficiency and wide operating speed range are impor...
متن کاملMathematical Modeling and Simulation of an Electric Vehicle
As electric vehicles become promising alternatives for sustainable and cleaner energy emissions in transportation, the modeling and simulation of electric vehicles has attracted increasing attention from researchers. This paper presents a simulation model of a full electric vehicle on the Matlab-Simulink platform to examine power flow during motoring and regeneration. The drive train components...
متن کامل